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Abstract

Background
Studies thatiattempt to measure shifts in species distributions often consider a single species in
isolation."Hewever, understanding changes in spatial overlap between predators and their prey

may give.deéper insight into how species redistribution affects food web dynamics.

Predator-prey.overlap metrics

Here we review a suite of ten metrics (range overlap, area overlap, the local index of collocation
(Pianka’s O), Hurlbert’s index, biomass-weighted overlap, asymmetrical alpha, Schoener’s D,
Bhattacharyya’s coefficient, the global index of collocation, and the AB ratio) that describe how
two speciessoverlap in space, using concepts such as binary co-occurrence, encounter rates,
spatial niche similarity, spatial independence, geographic similarity, and trophic transfer. We
describe the specific ecological insights that can be gained using each overlap metric, to
determine which is most appropriate for describing spatial predator-prey interactions for

different applications.

Simulation and case-study
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We use simulated predator and prey distributions to demonstrate how the ten metrics respond
to variation in three types of predator-prey interaction: changing spatial overlap between
predator and prey, changing predator population size, and changing patterns of predator
aggregation in response to prey density. We also apply these overlap metrics to a case study of
a predatoryfishi(arrowtooth flounder, Atheresthes stomias) and its prey (juvenile walleye
pollock, Gadus'chaleogrammus) in the Eastern Bering Sea, Alaska, USA. We show how the
metrics can be applied to understand spatial and temporal variation in the overlap of species

distributionsiintthis rapidly changing Arctic ecosystem.

Conclusions

Using both'simulated and empirical data, we provide a roadmap for ecologists and other
practitionersto’select overlap metrics to describe particular aspects of spatial predator-prey
interactions. We outline a range of research and management applications for which each

metric may.be.suited.

Key words::Arrowtooth flounder, climate change, Eastern Bering Sea, predator-prey overlap,
species distribution models, ecosystem models, spatial overlap, cold pool, species interactions,

walleye pollock

Introduction

Global environmental change is causing species distributions to shift at an accelerating rate,
with species moving into new areas and disappearing from their former ranges (Lawing & Polly
2011). However, species are not moving one at a time or in isolation. Rather, the distributions
of entire communities are shifting, and there is a growing need to understand how these
changes affect trophic interactions (Tylianakis et al. 2008; Gilman et al. 2010). For example,
climate-induced changes in habitat and phenology may drive differential responses in the

distributions of predators and their prey (Durant et al. 2007; Schweiger et al. 2012; Pinsky et al.
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2016; Siddon et al. 2016). This may result in increased (Vors & Boyce 2009) or reduced
(Schweiger et al. 2008; Asch 2015) predation opportunities. These increased matches or
mismatches in species distributions may have cascading effects including directional changes in
the abundance of predator or prey populations (Durant et al. 2007; Northfield et al. 2017),
predators switching prey types (Latham et al. 2013), or changes in competition dynamics within
predator guilds’(Northfield et al. 2017). Understanding how predator-prey interactions respond
to externalypressures is therefore essential for predicting how ecosystems will respond to
change (Araujo"& Luoto 2007), and for making informed ecosystem-based management

decisions (Pikitch et al. 2004).

Indices that'summarise spatial overlap between co-occurring species provide simple metrics
that can déscribe the potential strength of their ecological interactions (Hurlbert 1978). When
applied to predictions of species distributions, information on changes in overlap can increase
our ability to.project realistic ecological outcomes for interacting species (Guisan & Thuiller
2005; Schweiger et al. 2012), thereby better informing resource management and spatial
conservation planning. Overlap metrics can also add time-varying and spatially-explicit
attributes.to’ecological and ecosystem models (e.g. size-spectrum models and multispecies
stock assessment models). Within these models, spatial interactions between predator and
prey species,are.often poorly resolved at resolutions most relevant to their ecology, which may
complicatefinterpretations of how spatial overlap influences ecosystem dynamics (Greer &
Woodson 2016). Similarly, temporal changes in overlap between life stages of cannibalistic or
competitive conspecifics could bias estimates of density-dependent controls on species
productivity«(Sigler et al. 2016). Incorporating an overlap metric can increase the capacity of
these models to'more accurately predict the impacts of future environmental change on

ecosystem function (Greer & Woodson 2016).
A number of overlap metrics have been developed for ecological applications. These

metrics have been applied to diverse ecological questions, including examining niche

equivalency of species in environmental space (Warren et al. 2008; Broennimann et al. 2011),
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overlap of animal home ranges (Fieberg & Kochanny 2005), overlap in dietary niche among
competitors (Woodward & Hildrew 2002), and changes in resource partitioning among species
after environmental perturbations (Fattorini et al. 2017). Several reviews of overlap metrics
have discussed their mathematical and biological properties, and investigated sources of bias
and error (e'g. Hurlbert 1978; Krebs 1989, Roédder & Engler 2011). However, there remains a
clear needto'understand the specific ecological insights that can be gained using each overlap
metric, in arder to determine which is most appropriate for describing spatial predator-prey

interactionsifordifferent applications.

Here we provide a review of metrics that can be used to quantify spatial overlap between two
species. Tordetermine how the metrics resolve spatial predator-prey dynamics, we examine the
behaviour 6fthe metrics when applied to simulations of varying predator and prey density
distributions. Further, we apply the metrics to spatial interactions between a predatory fish
(arrowtooth.flounder, Atheresthes stomias) and its prey (juvenile walleye pollock, Gadus
chalcogrammus) in the Eastern Bering Sea, Alaska, USA. This case study demonstrates how the
metrics canitrack changes in species overlap driven by differential responses to environmental
variability=By summarising the properties of available overlap metrics and illustrating their
behaviour in response to various ecological scenarios, we aim to assist ecologists to select

appropriatesmetrics with which to quantify spatial predator-prey overlap for different purposes.
Methods

Overlap metric-description

Here we present.ten overlap metrics and their ecological interpretations (Table 1), separating
them into,descriptive categories to aid with ecological understanding. This is not a
comprehensive suite of all available metrics, but rather represents a spectrum of metrics that

are commonly used in ecology to measure horizontal overlap between two species

distributions, including metrics that are particularly relevant for understanding predator-prey
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interactions. The metrics we have chosen provide population-level estimates of overlap for
non-continuous survey data. Other scales of spatial overlap between species such as patchiness
were not included within the scope of this paper (but see e.g. Fauchald et al. 2002; Saraux et al.

2014; Greer et aly 2016).

Binary co-occurrence

For some applications, a metric of the co-occurrence of two species may be sufficient to
describe changes in spatial overlap (Selden et al. 2018). These metrics are particularly useful
where data enroccurrence but not biomass are available, such as for rare species. Co-
occurrence can be described in multiple ways, including the proportion of one species’ range
where the 'otherspecies also occurs (“range overlap”; Kernohan et al. 2001; Araujo et al. 2011),
or the proportion of a pre-defined study area where both species co-occur (“area overlap”;
Saraux et al. 2014). These metrics both range from 0 to 1. Binary co-occurrence metrics are
simple to interpret but do not discriminate between areas with high and low population
density, anditherefore provide limited insight into the potential strength of interactions

between species where they co-occur.

Encounter

Where biomass.or abundance data are available from standardised surveys, an alternative
approach t6 the co-occurrence metrics is the “local index of collocation” (also “Pianka’s O”,
Pianka 1973; Bez & Rivoirard 2000). This metric assesses the co-occurrence of two populations
using the proportion of their total biomass found at each sampling point, and determines the
degree of:correlation between two density distributions. This can broadly be thought of as
describing the ratio of the probability of interspecific (predator-prey) encounters to the
probability of allintraspecific encounters (the product of both predator-predator and prey-prey

encounters).

Similar metrics extend this approach, with the “asymmetrical alpha” reflecting the ratio of the

probability of predator-prey encounters to the probability of prey-prey encounters only (Levins
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1968). This asymmetrical approach gives insight into the amount of pressure exerted by the
predator on the prey. Another asymmetrical metric (“biomass-weighted overlap”) is similar to
the asymmetrical alpha but uses raw biomass rather than the proportion of total biomass
located at each point. These values can be used to give insight into the magnitude of predator
biomass that can.influence prey, or scaled to the maximum values for predator and prey in a
given year;to'keep'the range between 0 and 1. Biomass-weighted overlap may be useful when

estimatingypotential consumptive demand (Chasco et al. 2017).

“Hurlbert’s index” (Hurlbert 1978) can be used to assess whether two species use space in
proportion to'its availability. Accounting for spatial availability is particularly relevant when
considering'spatial overlap across an arena where spatial units differ in area, as it explicitly
accounts forresources of unequal sizes. Hurlbert’s overlap is 0 when species do not share space
at all, 1 where both species occupy space in proportion to its availability and > 1 where species
demonstrate preferences for particular spatial areas and these preferences coincide. Hurlbert’s
index is alsasthe©nly encounter metric that explicitly accounts for the size of the area occupied
by either'species (rather than the size of the entire domain), making it sensitive to changes in

the total area occupied by predator and prey.

Spatial niche.similarity

“Schoener’s D” determines whether there is equivalency between the spatial niches occupied
by two species (Schoener, 1970). This metric can be used either on modelled probability of
occurrence.data, or estimates of abundance or density distributions to determine whether
species oecupysspace in a similar way. In contrast to Hurlbert’s index, a potential drawback of
Schoener’s D as a predator-prey overlap metric is that it will return a high value of overlap in
cases where both species co-occur across large areas at low densities or probabilities of
occurrence, where their interaction is unlikely (i.e. their niche similarity is high because the
absolute difference between their densities across these locations is low). Equally, this metric
returns a low value of overlap in cases where predation pressure might be high, if there are

many predators in some areas relative to the number of prey.
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Spatial independence

The “Bhattacharyya coefficient” is a statistical approach that can quantify the affinity between
two probability density functions of spatial use, against the null assumption that the
distributions areiindependent (Bhattacharyya, 1943). This approach is not derived from
ecological theory'but can be interpreted as assessing whether two populations use space
independently of one another (Fieberg & Kochanny 2005). In a similar fashion to Schoener’s D,
the Bhattacharyya coefficient can be applied to modelled probability of occurrence data, or on

biomass-density values.

Geographicsimilarity

An alternativeto measuring overlap as the interaction between populations at the grid cell level
is to determine how geographically similar two distributions are across the entire study area
(“global index.of collocation”; Bez & Revoirard 2000). This can be done using geographic
coordinatessweighted by biomass, to determine the proximity of the centres of gravity of the
two populations given the dispersion or ‘inertia’ of individuals around that point. This approach
describes.spatial overlap at a regional scale, which may be useful for understanding broad
patterns of overlap between two species, rather than fine-scale interactions. For example, a
high globalindex.of collocation for two species may not translate to high encounter or

consumption rates, if the species do not also co-occur at finer spatial scales (Saraux et al. 2014).

Trophic transfer

Variability-inspredator density that can be explained by local prey density is a useful way of
characterising overlap, as it accounts for potential trophic transfer between species (“AB ratio”;
Greer & Woodson 2016). An AB ratio of 0 indicates that the mean densities of predator and
prey across the whole survey area accurately represent predator-prey encounters, while a
value of 1 indicates 100% higher production of the predator as a result of fine-scale spatial
overlap with prey, assuming a “Holling Type |” functional response. Negative values can indicate

different habitat preferences between species, or predator avoidance by the prey, where -1
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represents complete avoidance. This metric provides insight into how trophic processes are

likely to translate local prey abundance into predator production.

Metric responses to simulated predator-prey interactions

Simulated populations

To illustrate how various overlap metrics respond to shifting predator-prey dynamics, we
simulated interacting predator and prey populations on a 200 x 100 gridded spatial domain. We
included twomways of manipulating predator density in relation to prey density: changing
“predator population size” where predator density increased uniformly, and changing
“predator aggregation”, where predator biomass shifted from areas where there were no prey
into areas of'high prey density, keeping total predator abundance constant across the domain.
Although these ecological processes occur at different timescales in the real world, we use the
resulting distributions as snapshots to determine how different types of spatial interactions

between predator and prey influence metric values.

On the gridded arena, we simulated unconditional Gaussian densities of a prey population
(Dprey,i) with moderate spatial autocorrelation (patchiness), using a spherical variogram model
(sill = 0.35,.nugget = 0.05, range = 10) in the R package gstat (Pebesma 2004). We took the
exponent of these values to obtain a lognormal distribution, to match right-skewed densities
observed in natural populations. We then allowed predator density (Dpy¢q,) to be influenced by
three processes:

Dyreai = @Dprey,i + BDpreys + 6;
Where «a is a coefficient (0-2) that controls the relationship between predator density and prey
density (Dprey) inga given cell (;). f is a coefficient (0-2) that controls the response of predator
density toamean prey density within a specified search area, representing the “aggregation”
response of predators to mean prey density (ﬁprey) within a neighbourhood of s grid cells
around the cell of interest (/). The spatial variance term (&) is a second log-density value

generated using a spherical variogram model (sill = 0.2, nugget = 0.1, range = 9), added to
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represent spatial processes such as habitat selection that influence predator density

independently of prey density.

Scenarios of predator-prey interaction

1. A Overlap'window

After generating predator and prey distributions across the whole 200 x 100 spatial domain
using the eguation above, we clipped the spatial domain into two distinct distributions of
predator and prey, with dimensions of 100 x 100 each (Figure 1). We designated species as
absent in thewportion of the spatial domain outside their distribution. Keeping the size of the
predator and/prey distributions constant at 100 x 100, we then manipulated the proportion of
the prey’s distribution that was shared by the predator, from 0 (where the two species shared
no common'cells) to 1 (where the two species overlapped completely), in 10% spatial
increments. While changing the size of this overlap window, we left a (“population size”
parameter).and.f (“aggregation response” parameter) constant at 1, and fixed s (“search area”)

to a windowsof,9 cells (3 x 3), centred on the cell of interest.

2. A Predator population size
To simulate the influence of uniformly increasing predator density, we manipulated a from 0 to
2 atintervals,0f 0.2. We left the overlap window constant at 0.5, search area at s =9 and

aggregation response at § = 1.

3. A Aggregation response of predator to prey

To simulate-a=change in the aggregative effect of prey on predator density, we manipulated the
predator aggregation response from weaker to stronger (8 from 1 to 2 at intervals of 0.1)
within the overlap window, where predator and prey interacted directly. Simultaneously, we
manipulated S from 1 to 0 in the area outside the overlap window, to ensure that the overall
sum of predator densities were unchanged. For example, where predator density increased
relative to prey density by a factor of 1.1 in the overlap window, it decreased by a factor of 0.9

across the rest of the predator’s range, to simulate the predator moving from areas of no prey

This article is protected by copyright. All rights reserved



261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

to areas of high prey density. We fixed the overlap window at 0.5, “bottom up” density

response at a = 1, and the search window s at 9.

Application of overlap metrics

We appliedithe'suite of ten overlap metrics to the predator and prey distributions in each of
the three seenarios (changing overlap window, changing predator population size, and changing
aggregation response) to characterise patterns of overlap. Because the overlap metrics were
influenced by the random variation in biomass distribution in each spatial model run, we
calculated thesmean value for each overlap metric for each of 500 iterations of predator and

prey distributions under each of the three scenarios.

Functions to'implement the predator-prey overlap metric equations in R are included as

supplementary material in the online version of this article.

Metric responses to predator-prey dynamics in the Eastern Bering Sea

To evaluaterthe performance of the overlap metrics on real ecological data, we present a case
study of spatial dynamics between a predator (arrowtooth flounder, Atheresthes stomias) and
prey (juvenile.walleye pollock, Gadus chalcogrammus) in the Eastern Bering Sea, Alaska.
Arrowtooth flounder is a bottom-dwelling flatfish that has seen an 8-fold increase in abundance
on the Eastern Bering Sea shelf over the past 36 years (Wilderbuer et al. 2010). It is a key
predator of juvenile walleye pollock, an abundant forage fish in the Eastern Bering Sea
ecosystem (Springer 1992). The distributions of both species are influenced by the Eastern
Bering Sea “cold\pool” (Kotwicki & Lauth 2013), a water mass on the seafloor that is defined by
temperatures < 2 °C and varies greatly in size between years as a function of sea ice extent
during the previous winter (Stabeno et al. 2008). The study species have contrasting responses
to the cold pool: juvenile pollock are more tolerant of cold water (Kotwicki & Lauth 2013), and

may use the cold pool as a refuge to avoid predation (Hollowed et al. 2012), while arrowtooth
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flounder are constrained to warmer water and generally avoid the cold pool (Ciannelli et al.

2012, Spencer et al. 2016).

Previous work has demonstrated a potential increase in overlap between these two species as
biomass of flounder increases and extent of the cold pool decreases (Hunsicker et al. 2013).
This resultsinfincreased predation pressure by arrowtooth flounder on juvenile pollock,
affecting pollock recruitment and abundance, creating a complex management issue for the
Eastern Bering Sea (Hunsicker et al. 2013; Spencer et al. 2016). This relatively well-characterised
example of changes in predator-prey dynamics over a 36-year time series provides an
opportunity to explore the behaviour of the overlap metrics when estimating real world

changes in'spatial predator-prey dynamics.

Arrowtooth and pollock distributions

Annual summer.distributions of juvenile walleye pollock (< 25 cm, approximate age classes 1-2)
and adult arrowtooth flounder (> 30 cm) in the Eastern Bering Sea were estimated between
1982 and 2017, during annual summer fisheries-independent trawl surveys conducted by the
National Oceanic and Atmospheric Administration. These length classes reflect the size above
which arrowtooth flounder begins to predate intensively on pollock (Livingston et al. 2017).
Catch per unit.effort (CPUE; number of fish per km?, Alverson & Pereyra 1969) was determined
for approximately 376 stations across the survey region using a standard trawl net (83 — 112
eastern otter trawl) towing for ~ 30 min at 1.54 m/s. Length classes were determined by
measuring the fork length of a subsample of fish from each tow, and expanding this to the
entire catehsinsa-given tow based on the ratio of sampled weight to total towed weight for each

species.

We estimated the distribution and density of juvenile pollock and arrowtooth flounder using
the Eastern Bering Sea shelf CPUE data, while accounting for sampling effort that was uneven in
space and time. To do this, we applied two separate delta-generalised linear mixed models

using the Vector Autoregressive Spatiotemporal (VAST) package in R (https://github.org/james-
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thorson/VAST). VAST has become a widely used tool for fisheries scientists and managers, and
we used default model settings for model parameterisation (Thorson and Barnett 2017;
Thorson 2019). The delta model framework jointly estimated the probability of occurrence
(binomial distribution) and the positive catch rate (log-normal distribution) for each species for
each survey'yean (1982 — 2017). Model parameters were estimated for 250 locations (“knots")
that were selected"by applying a k-means clustering algorithm to the CPUE data to identify
geographielocations that reflect survey sampling intensity (Thorson and Barnett, 2017).
Environmental covariates were temperature at depth of trawl (°C; measured by trawl gear) and
bottom depths(m), and were included as quadratic forms in the model to allow for non-linear
responses (Thorson et al. 2017). Year was treated as a fixed effect (default VAST setting), while
spatial variationi(which does not change among years) and spatio-temporal variation (which is
estimated independently in each year) were treated as random effects described by a Gaussian
process. These random fields allow modelling of multi-dimensional factors that are not directly
included in_the.model, but that affect the density and distribution of the modelled species.
Including spatialivariation in the model allowed for correlations in CPUE between nearby
locations,'with spatial correlation declining with increasing distance. Species density was
predicted.at'each knot by multiplying the probability of occurrence with positive catch rate
estimates. Density estimates for each knot were then multiplied by the knot area (km?) to

create annual.surfaces of species abundance across the entire Eastern Bering Sea shelf.

In order to create “absences” for the binary cooccurrence metrics, we determined that species
were absent at knots where probability of occurrence was less than the lower quartile of
probability ef.eccurrence values across the total sampled area for that species in a given year.
This approach todefining absences based on the distribution of probability values results in

lower bias than using an arbitrary probability threshold such as 0.5 (Liu et al. 2005).
Arrowtooth and pollock overlap

To illustrate differences in how the metrics characterise predator-prey overlap, we applied the

suite of ten metrics to the estimated density surfaces for arrowtooth flounder and juvenile
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347  pollock for 2012 and 2016, years when the cold pool extent was high and low respectively.

348  Given the contrasting preferences of each species for the cold pool, overlap between flounder
349  and pollock might be expected to be low in 2012 and higher in 2016 (Hunsicker et al. 2013). We
350 present spatiallyzexplicit estimates of each overlap metric, by decomposing the global metric
351 values intotheirgrid cell-level components (i.e. we map the value for each cell without

352 integrating'ortaking means across the whole spatial domain). For the global index of

353  collocationy we map the position of the centre of gravity and inertia axes. Along with spatially-
354  explicit estimates, we show total metric values. We also present the full annual time series

355 (1982 - 2017)wof overlap values for each metric.

356

357 To visualise"howspatially-explicit overlap related to cold pool extent in 2012 and 2016, we

358 mapped the"poesition of the cold pool (bottom waters < 2 °C) from the bottom temperatures
359 measured during the trawl surveys. We used ordinary kriging in the R package gstat (Pebesma
360 2004) to estimate these temperatures at the same knots as the species abundance data.

361

362  Results

363

364  Metric responses to simulated predator-prey interactions

365

366  Sensitivity to changes in spatial overlap

367 Most overlap metrics demonstrated an increase in response to a larger window of overlap

368 between the predator and prey populations (Figure 2A). These responses were predominantly
369 linear. However; the global index of collocation demonstrated a sigmoidal curve, and Hurlbert’s
370 index reached an asymptote as the overlap window shared by the distributions neared one. The
371  ABratio was by far the most sensitive metric to changes in the size of the overlap window

372  becauseiit.has the largest range. This simulation showed that when the distributions reached
373 complete overlap, predator density was four times greater in areas where it overlapped with
374  prey, relative to its mean density across the whole arena (where both species were largely

375 absent).
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Sensitivity to changes in predator population size

Most overlap metrics increased slightly as predator density increased relative to prey density, in
the absence of an aggregative response. These increases generally reached an asymptote as the
ratio of predatorndensity to prey density neared one (Figure 2B). Exceptions were the area and
range overlapsiand‘the global index of collocation, which remained constant as both the area
occupied by each species and their centres of gravity remained the same. Again, the AB ratio
was the most sensitive in this scenario as predator density increased in areas where it

overlapped with prey, relative to its mean across the domain.

Sensitivity to'changes in aggregative response of predator to prey

Most overlap'metrics increased slightly in response to changes in the aggregative response of
predator to prey within the area of overlap (Figure 2C). Unlike in the previous scenario, the
global index.of collocation increased because the centre of gravity of the predator shifted
incrementally'tewards that of the prey as its biomass in the overlap window increased.
Hurlbert’siindex was sensitive to changes in this parameter, as the predator distribution
became ineréasingly less uniform and coincided more with the spatial niche occupied by the
prey. The AB ratio was also sensitive to changes in this parameter because predator density
increased inareas where it overlapped with prey, relative to its mean across the domain. The
biomass-weéighted overlap did not vary in response to this scenario because predator density is
scaled to its maximum value across the range, which did not increase. The binary co-occurrence
metrics did\not change in response to this scenario either, as the size of the overlap window

was heldsconstant.

Metric responses to predator-prey dynamics in the Eastern Bering Sea

Pollock and arrowtooth overlap

The values of all metrics showed that the overlap between arrowtooth flounder and juvenile

walleye pollock was low in 2012, when the cold pool covered most of the shelf area (Figure 3).
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However, the overlap metrics demonstrated some differences in patterns of spatially-explicit
overlap. Centre of gravity and inertia for pollock (key components of the global index of
collocation) showed that its distribution was centred in the middle of the shelf, in the cold pool.
By contrast, the distribution of arrowtooth flounder was centred on the lower portion of the
shelf, outside the cold pool. The co-occurrence metrics showed that during this year, the
species co-occurred across the centre of the shelf, but did not co-occur in shallower waters due
to the absence of arrowtooth flounder from this area, or in the southeast portion of the shelf
due to the absence of pollock from this area. Most other metrics (asymmetrical overlap,
Bhattacharyya’s coefficient, biomass-weighted overlap, Hurlbert’s index and the local index of
collocation) showed that the highest area of overlap occurred in the northwest corner of the
Eastern Bering'Sea shelf, where relatively high densities of both flounder and pollock coincided.
The AB ratio'returned mostly negative values, indicating that there was general avoidance
between juvenile pollock and arrowtooth, probably caused by their different relationships with
the cold pool.rather than direct avoidance of arrowtooth by juvenile pollock. Values of the AB
ratio were lower in areas where arrowtooth density was most negatively associated with
pollock density (e.g. where flounder density was high but pollock density was low). The highest
values of the"AB ratio were around O, in places where the densities of both species were
predicted to be low. Similarly, Schoener’s D showed higher values in areas where the difference
in the proportion of flounder and pollock abundance was lower (i.e. where niche similarity was
high), including large portions of the shelf where both species were present at very low

densities.

During 2016;an-unusually warm year in the Eastern Bering Sea, overlap between arrowtooth
flounder and juvenile pollock was much higher than in 2012 (Figure 4). The centre of gravity
and inertia of the distributions showed a shift westward by pollock toward the reduced cold
pool areas Arrowtooth flounder shifted further up onto the shelf as it exploited a greater
portion of available shelf habitat due to the absence of the cold pool, and potentially
experienced a density-dependent expansion (Spencer 2008). The co-occurrence metrics

showed the least change between the two years, with only slightly more overlap in the middle
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portion of the shelf in 2016, where arrowtooth flounder had expanded its occupation. The
encounter metrics showed a small region of intense overlap in the westernmost part of the
shelf on the periphery of the cold pool, with spatially-explicit metric values in those cells an
order of magnitude greater in 2016 than in 2012. In several cells in this part of the shelf region,
the AB ratig'indicated that the density of arrowtooth flounder was 2.5 times greater than the

mean, potentially"as a result of its overlap with juvenile pollock.

The 36-yeartime series showed substantial variability in the values of the metrics between
years (Figures5). Perhaps unsurprisingly, the binary cooccurrence metrics showed the smallest
range of variation across the time series, with changes of approximately 10% in the amount of
the shelf area"occupied by both arrowtooth flounder and juvenile pollock. The most sensitive
metrics included the global index of collocation, which showed a relative shift in the weighted
centres of gravity of both species of approximately 20% of the total metric range. A general
increasing trend.in overlap was seen in some metrics, including Bhattacharyya’s coefficient,
Schoener’s D and the global index of collocation. For most metrics, the last three years of the
time seriesy(2015 — 2017) showed higher overlap than the first three years (1982 — 1984), and

overlap was'elatively low and high in 2012 and 2016, respectively.

Discussion

Here we demonstrated the properties of a suite of overlap metrics, and showed how they can
describe different types of predator-prey interactions. Below we briefly review the specific
ecologicalinsights that we gained from the metrics using the simulated populations and the
Eastern Bering Sea case study. Based on these insights, we discuss various applications for
which the metrics may be suitable and include a decision tree to help readers select a metric

based oh.data type and ecological question (Figure 6).

Insights into ecological interactions
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The overlap metrics give a range of insights into spatial interactions between predators and
their prey. This is important because there are different types of predator-prey interactions
that practitioners may wish to quantify, such as total predation pressure exerted by a predator
on a prey population (Spencer et al. 2016), spatial hotspots of predation (Eero et al. 2012), or
productivity'of aypredator population that can be attributed to its overlap with a key prey
species (Greer& Woodson 2016). Understanding the specific insights that the metrics give into
predator-prey interactions can allow appropriate metrics to be selected for different
applications«(Figure 6), and for metric values to be interpreted appropriately. Furthermore,
tracking changes in metric values through time can give important insight into how shifts in the
spatial distribution of interacting species might be altering components of ecosystem function

(Tylianakistetali:2008; Gilman et al. 2010).

Using our simulation and case study, we show that the binary co-occurrence metrics (area and
range overlap).provide a simple and interpretable way of measuring spatial overlap between
two speciess However, these metrics cannot be used to quantify fine-scale interspecific
interactions,such as predation, which are a function of factors including species density and
aggregation‘patterns (Hurlbert 1978). Specifically, because species can be designated “present”
even at very low densities, the co-occurrence metrics are likely to overestimate the probability
of interspecific.interactions. In most cases, using habitat models to calculate a spatially-explicit
probability/of oceurrence surface provides more information than simply a “presence” or
“absence”, and can deal with biases associated with the detection of species or variability in
sampling. Estimated probability values can then be fed into overlap metrics such as Schoener’s
D or Bhattacharyya’s coefficient, giving insight into the relative preferences of both species for

shared spatial resources (Fieberg & Kochanny 2005).

Many studies have demonstrated the efficacy of Schoener’s D for understanding niche overlap
between species in environmental space (e.g. Warren et al. 2008; Broennimann et al. 2012). We
took a purely spatial approach to understanding overlap between predator and prey without

explicitly testing the underlying environmental mechanisms driving their distributions. Used in
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this way, Schoener’s D provides insight into whether species share preferences for particular
areas, which is important for understanding whether they might be affected in similar ways by
anthropogenic or environmental processes. Bhattacharyya’s coefficient is not derived from
either ecologicaljor spatial theory, however it provides an objective statistical approximation of
whether two populations use space independently of one another. Although Schoener’s D and
Bhattacharyya’s coefficient quantify similarities and differences in space use between two
populations, they are not designed to give insight into the strength of potential interactions
between two species. They may therefore be more appropriate for quantifying overlap in

general, ratherthan as tools to understand specific elements of spatial predator-prey dynamics.

The encountermetrics (asymmetrical alpha, biomass-weighted overlap, Hurlbert’s index, and
the local index'of collocation) provide the most intuitive definition of overlap as a proxy for
predator-prey interactions. The insights from each of the encounter metrics are similar,
however Hurlbert’s index is sensitive to both the size of the area over which two species occur,
as well as variability in the size of spatial sampling units. Explicitly accounting for changes in the
size of therarea occupied by predator and prey incorporates useful information on species’
range expansions or contractions, and better captures the potentially increasing impacts of a

predator on its prey as it occupies a larger proportion of the prey’s range (Hurlbert 1978).

Applications of overlap metrics

There are many applications for which overlap metrics can provide important information
about spatial relationships between predators and their prey. The choice of overlap metric for
each application‘depends on both the data type, and the scale of inference that is required

(Figure 6).

The binary.co-occurrence metrics describe broad spatial patterns relating to the potential for
two populations to be in the same area. This may be desirable for some applications where only
occurrence data are available, and a simple approach is required for defining spatial

boundaries. For example, binary metrics may be appropriate for conservatively managing
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interactions with rare species (Hazen et al. 2018), or projecting spatial overlap under future
environmental conditions where the precision of estimated distribution shifts is assumed to be
low (Selden et al. 2018). Within this category of metrics, the choice of whether the area or
range overnlap metric is preferred depends on whether a study aims to determine the
directionaldnfluence of one species on another (range overlap), or the overlap between two
species acrossa given spatial area (area overlap) (Figure 6). For example, the range overlap
metric could be used to quantify how much of a predator’s future range will overlap with that
of its prey, using,predictions of species distributions made onto climate forecasts (e.g.
Schweiger etxali"2008; Selden et al. 2018). The area overlap metric could be used to quantify
the proportion of a pre-defined management area (e.g. park, region, state or continent) that

might continueto see the co-occurrence of two species under future conditions.

The encounter metrics and the AB ratio can be used to add spatial information to non-spatial
models. For.example, non-spatial ecosystem models (e.g. Ecosim) aggregate information about
species’ biomass, and calculate estimates of consumption and mortality across a whole region.
However, these models often assume constant proportions of prey biomass available to a
predator (esg. 100%), which may result in overestimates of consumption rates if two species do
not overlap at ecologically relevant spatial or temporal scales (Greer & Woodson 2016).
Conversely,.consumption rates can be underestimated in cases where prey is highly aggregated
and therefore more readily accessible to predators, such as at fronts in the open ocean (Bost et
al. 2009), or at water sources in terrestrial systems (de Boer et al. 2010). The encounter metrics
and the ABratio provide information about correlations between the densities of two species
across sampling:points, which relates to the probability of their interaction or production. These
metrics therefore provide a useful time-varying estimate of the potential strength of predator-

prey interactions,that can be included in ecological models.
Spatially, the encounter metrics can illustrate areas of more or less intense interaction between

predator and prey. In our Eastern Bering Sea case study, the northwest portion of the survey

area demonstrated high overlap between arrowtooth flounder and juvenile pollock using the
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encounter metrics, with overlap increasing in this area under warmer conditions (Figures 3 and
4). This information may be useful for managing resources in a spatially-explicit way, in cases
where mitigation of the influence of one species on another is desired for ecosystem-based
management. For example, targeted culling of a ‘problem’ predator in areas of high overlap (i.e.
high putative predation pressure) may prove an efficient and cost-effective means of boosting
the abundance’of'a'prey species that is commercially important, or of conservation concern

(Burrows et al. 2003; Persson et al. 2007; Eero et al. 2012).

The global index of collocation can be applied to define overlap at the broad scale of the ranges
of stocks, populations or species; the scales at which spatial conservation and management
decisions are"usually made. Furthermore, the centre of gravity and inertia from which the
global index"efcollocation is calculated provide simple and interpretable spatial metrics that
can aid in understanding the mechanisms underlying changes in patterns of spatial overlap. For
example, these.can be used to highlight differential rates of poleward shifts by predator and
prey in response to climate change (Le Roux & McGeoch 2008). Unlike any of the other metrics
examinedin,this paper, the global index of collocation does not include information on co-
occurrencesor the correlation of species’ biomass at the grid-scale level, making it less useful for
understanding interactions between species at scales that are more relevant to their ecology.
However, the global index of collocation can provide a useful complement to the encounter
metrics, tounderstand processes governing the overlap of species at nested spatial scales

(Saraux et al. 2014).

Overlap between arrowtooth flounder and juvenile pollock

The metrics thatiwe investigated gave new insight into changes in spatial overlap between
juvenile walleye pollock and adult arrowtooth flounder, a predator that has been growing in
abundance in'the Eastern Bering Sea over the past 30 years. We showed that spatial overlap
between these two species was very low in 2012, when the presence of an intense Eastern
Bering Sea cold pool restricted flounder from moving up onto the shelf. We then showed that in

an anomalously warm year (2016), overlap estimated using all 10 metrics was much higher than
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in 2012, mirroring previous work showing an increase in predation pressure by arrowtooth
flounder on juvenile pollock associated with warm conditions (Hunsicker et al. 2013; Spencer et

al. 2016).

By mappingrareas of high and low overlap of these species, we show how the metrics can
identify important'shared habitat. We also highlight areas that may be of management interest
during thewstanzas of anomalously warm temperatures that have increasingly been impacting
the EasternsBeing Sea ecosystem (Stabeno et al. 2017). The full 36-year time series of overlap
between juvenile pollock and flounder showed an overall increasing trend in overlap for some
metrics. This trend is of concern to managers, as juvenile walleye pollock is a species of great
commercialiimportance for the United States, and predation pressure may have an increasing
effect on the"population as the Eastern Bering Sea warms (Hunsicker et al. 2013; Spencer et al.
2016). This case study highlights how overlap metrics can be used to track species interactions

both in space.and through time under varying environmental conditions.

Conclusions

The diversessuite of overlap metrics examined in this paper quantify spatial predator-prey
interactions, and can track how these interactions change through time. Our simulations and
case study show.that no single metric emerges as being most useful across all scenarios.
Instead, we recommend that the overlap metric(s) chosen for a particular study should reflect
the type of data available, and the desire to understand particular elements of ecological and
spatial relationships between species (Figure 6). In many cases, employing a combination of
several metriessmay deliver the most comprehensive assessment of spatial predator-prey
overlap. For example, the global index of collocation could be chosen to give insight into broad
patterns of distribution, Schoener’s D to understand niche equivalency across habitat types that
may drive,overlap, and Hurlbert’s index to estimate inter-specific encounter, accounting for
variability in spatial resource availability. In such a combination, these metrics provide
complementary information regarding shared space use and probability of interaction between

predators and prey at nested scales of distribution and behaviour.

This article is protected by copyright. All rights reserved



607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

Data accessibility
We used bottom trawl data collected by the Eastern Bering Sea bottom trawl survey, publicly
available at:

http://wwwiafse.noaa.gov/RACE/groundfish/survey data/data.htm

Functions to implement the predator-prey overlap metric equations in R are included as
supplementarymmaterial in the online version of this article.
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Table 1: Ecological description of each predator-prey overlap metric, ecological questions that
they are suitable for, equations, data type that they can input, whether the metric returns a
symmetrical result for predator and prey, whether the metric ranges from 0 to 1, and citations.
In the equationspred; and prey; are densities of predator and prey in a given area, p_pred; and
p_prey; aresthe proportion of the total number of predator and prey in a given area, Apreq and
Aprey are thetotal'area occupied by the predator and prey, Agred,prey is the area occupied by both
species, Agupied is the total area occupied by at least one of the species, Az is the total size of

the study area,"CG is the centre of gravity and / is inertia.

Table 2: Model parameter estimates and significance for the probability of occurrence and
positive cateh'rate of pollock and arrowtooth flounder. u is the mean and gives the average
results for all'years between 1982 - 2017; * indicates only some years were significant; o is the
standard deviation of the spatial and spatiotemporal processes. Modelled probability of
occurrence.and.positive catch rate were estimated using a Vector Autoregressive
Spatiotemporal(VAST) model, parameterized with a log-normal distribution, with spatial and
spatiotempeoral variation (FieldConfig=c(1,1,1,1)), and environmental covariates (temperature

and depth)«as quadratic functions.

Figure 1: Schematic showing three scenarios of spatial interaction between simulated
populations of predator and prey: S1) incremental change in the area of overlap between
predator and prey (dashed lines), with predator density and aggregation response held
constant; S2) incremental change in predator density in response to prey density, with the
overlap windew-and aggregation response held constant; S3) incremental change in the
aggregation response of the predator to prey (density of predator increases in relation to prey
density only in the overlap window, while decreasing proportionally outside the overlap
window), with size of the overlap window and overall predator density held constant. In each
panel, the predator is on the left and the prey on the right. The prey is shown in light grey, and

the shade of the predator is manipulated to show increases or decreases in density. Areas
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where the predator and prey overlap are depicted using shades that are intermediate between

the two densities, and hatched areas are where both species are absent.

Figure 2: Overlapymetric behaviour in response to different scenarios of predator-prey
interactions"A) change in area of overlap; B) change in predator density (« is a coefficient (0-2)
that controls‘predator density in relation to prey density), and C) changes in aggregative
response (B is a coefficient (0-2) that controls aggregation response of the predator such that
predator biemass moves from areas of no prey into areas of high overlap with prey). Metric

values are means taken over 500 simulations of predator-prey distribution.

Figure 3: A)Cold pool extent on the Eastern Bering Sea shelf in 2012, a cold year (grey areas
reflect tempeératures > 2 °C); B) estimate of arrowtooth flounder (predator) density distribution
in 2012 and C) estimate of juvenile walleye pollock (prey) distribution in 2012. Densities at
locations where.the probability of occurrence was less than the lower quartile across the survey
area were deemed to be absences and are greyed out. Spatially explicit overlap calculated by
the 10 overlap metrics (AB ratio, asymmetrical overlap, Bhattacharyya coefficient, biomass-
weighted.everlap, Hurlbert’s index, local index of collocation, Schoener’s D, area and range
overlap) are shown below. Total values of overlap for each metric for this period are displayed

in the top right.corner of each map.

Figure 4: A) Cold pool extent on the Eastern Bering Sea shelf in 2016, an anomalously warm
year (grey areas reflect temperatures > 2 °C); B) estimate of arrowtooth flounder (predator)
density distribution in 2016 and C) estimate of juvenile walleye pollock (prey) distribution in
2016. Densities at locations where the probability of occurrence was less than the lower
quartile across the survey area were deemed to be absences and are greyed out. Spatially
explicit overlap calculated by the 10 overlap metrics (AB ratio, asymmetrical overlap,
Bhattacharyya coefficient, biomass-weighted overlap, Hurlbert’s index, local index of
collocation, Schoener’s D, area and range overlap) are shown below. Total values of overlap for

each metric for this period are displayed in the top right corner of each map.
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Figure 5: 36-year time series (1982 — 2017) of overlap between juvenile walleye pollock and
arrowtooth flounder in the Eastern Bering Sea, Alaska, calculated using ten overlap metrics (AB
ratio, asymmetrical overlap, Bhattacharyya’s coefficient, biomass-weighted overlap, global
index of collecation, Hurlbert’s index, local index of collocation, Schoener’s D, area overlap and

range overlap):2012 and 2016 (highlighted in spatial analyses) are shown with red triangles.

Figure 6: A decision tree to help readers select a predator-prey overlap metric based on
considerations'such as the type of species distribution data available and the type of predator-
prey interactions that are of interest. Colours represent the metric categories, with red =
“spatial independence”, dark blue = “niche similarity”, green = “binary co-occurrence”, orange

= “geographicsimilarity”, yellow = “trophic transfer”, light blue = “encounter”.
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Metric

Area overlap

Range overlap

Local index of

collocation

Asymmetrical

alpha

Biomass-
weighted overlap

index

Hurlbert's index

Schoener's D

Bhattacharyya’s

Coefficient

Metric type

Binary co-

occurrence

Binary co-

occurrence

Encounter:

Encounter.

Encounter

Encounter

Niche

equivalency

Spatial

independence

Description

Measures the proportion
of all sampled locations
across a pre-defined area,
where species co-occur
Measures the proportion
of one species' range
where the other co-occurs
Measures co-occurrence
by estimating the
correlation of predator
and prey densities
Measures the competitive
pressure of predator on
prey

Measures amount of
predator biomass
interacting with prey
(scaled to maximum prey
density)

Measures interspecific
encounter rate between
predator and prey
Measures how equally
predator and prey use
space relative to its
availability

Measures statistical
affinity between two

distributions

Suitability

Suitable for estimating area of
co-occurrence across a pre-

defined region

Suitable for estimating influence
of one species on another based

on their co-occurrence

Suitable for estimating

encounter rates

Suitable for estimating
encounter rates relative to prey

encounter

Useful where relative biomass
of predator and prey is of

interest

Suitable for estimating
encounter rates where
resources vary in abundance
Suitable to understand niche
equivalency in spatial resource

use

Suitable for estimating
independence in space use

between two populations
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Equation

i (pred;/max (pred) * prey;/max (prey))

Apred,prey /A total

Apred,prey/Aprey

X (p_pred; = p_prey;)

\/ X! p_pred? X} p_prey?

Xi(p_pred;  p_prey;)

/2? p_prey?

X1 prey;/max(prey)

n
Z (p_predi * p_preyi>
7 Ai/Aoccupied

n
1-0.5* ZI p_pred; — p_prey; |
i

n

z Vp_pred; » p_prey;

i

Data type

Occurrence

Occurrence

Biomass

Biomass

Biomass

Biomass

Biomass or

occurrence

Biomass or

occurrence

Symmetry 0-1

Yes Yes
No Yes
Yes Yes
No Yes
No No
Yes No
Yes Yes
Yes Yes

Reference

Saraux et al. 2014

Araujo et al. 2011

Pianka 1973;
Bez & Rivoirard

2000

Levin 1968

J Thorson

unpublished

Hurlbert 1978

Schoener 1970

Bhattacharyya,
1943



Global index of Geographic
collocation similarity
Trophic
AB ratio
transfer
848 Table 1

Measures geographic
distinctness by comparing
centres of gravity of
populations with the
dispersion of sampled

individuals

Measures predator
production that can be
attributed to spatial

overlap with prey

Suitable for estimating spatial

overlap at a regional scale

Suitable for understanding
trophic implications of fine-scale

predator-prey overlap
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1- ACGpred,preyz

2
ACGpred,prey + Ipred + Iprey

where:
CGproq = M Biomass Yes
e pred;
and:
,_ ZH=C6) «pred;
e = pred;
d: — d . Prev
pred; — preax preyi— prey Biomass No

pred » prey

Yes

No

Bez & Rivoirard

2000

Greer & Woodson
2016



Pollock Occurrence

Pollock Catch Rate

Flounder Occurrence

Flounder Catch Rate

Estimat Significanc Estimat Significanc Estimat Significanc Estimat Significanc

Parameter e e e e e e e e
W= -

Year n=.21.8 p<0.05* =270 p<0.001 0.38 p<0.05* n=1.13 p<0.05*
Temperature -0.06 p=0.48 0.27 p<0.001 2.66 p<0.001 1.40 p<0.001
Temperature2 0.07 p=0.06 -0.03 p=0.2 -1.14 p<0.001 -0.52 p<0.001
Depth -0.11 p=0.49 -0.26 p<0.05 3.49 p<0.001 1.28 p<0.001
Depth? -0.42 p<0.001 -0.28 p<0.001 -0.89 p<0.001 -0.32 p<0.001
Spatial
variation 0=1.01 p<0.001 0=0.61 p<0.001 0©0=1.48 p<0.001 0©0=0.73 p<0.001
Spatiotemporal o=
variation 1.02 p<0.001 0©=0.88 p<0.001 0=1.05 p<0.001 o0=0.52 p<0.001
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